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Abstract

We performed time-resolved spectroscopy on a sample of 38 single pulses from 37 gamma-ray bursts detected by
the Fermi/Gamma-ray Burst Monitor during the first 9 yr of its mission. For the first time a fully Bayesian
approach is applied. A total of 577 spectra are obtained and their properties studied using two empirical photon
models, namely the cutoff power law (CPL) and Band model. We present the obtained parameter distributions,
spectral evolution properties, and parameter relations. We also provide the result files containing this information
for usage in further studies. It is found that the CPL model is the preferred model, based on the deviance
information criterion and the fact that it consistently provides constrained posterior density maps. In contrast to
previous works, the high-energy power-law index of the Band model, (3, has in general a lower value for the single
pulses in this work. In particular, we investigate the individual spectrum in each pulse, that has the largest value of
the low-energy spectral indexes, a. For these 38 spectra, we find that 60% of the « values are larger than —2/3,
and thus incompatible with synchrotron emission. Finally, we find that the parameter relations show a variety of
behaviors. Most noteworthy is the fact that the relation between « and the energy flux is similar for most of the
pulses, independent of any evolution of the other parameters.
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1. Introduction

The study of spectral shapes of the photon flux observed
from astrophysical objects is a powerful tool to investigate the
underlying physical processes. However, even after half a
century of observations, the intrinsic spectral shape of the
prompt emission of gamma-ray bursts (GRBs) remains
unknown. Although during the past few decades many attempts
have been made to fit the spectra with empirical, semiphysical,
and physical photon models, we still have not found a
comprehensive explanation of the emission mechanism of the
prompt emission phase in GRBs. This is partly due to the large
diversity in spectral shapes that is observed, which prevents a
single and simple explanation to be found, and partly due to the
inherent difficulties of performing gamma-ray spectroscopy.

Conventionally, mathematical functions (a.k.a. models) are
fit to the observed photon counts. These are usually empirical
models with the least possible number of parameters. Physical
meaning of the parameters can be interpreted by comparing the
values resulting from the fit to the predicted values from the
theories. Among the frequently used models are the simple
power law, cutoff power law (CPL), Band function (e.g., Band
et al. 1993), smoothly broken power law, and the Planck
function (a.k.a. the blackbody spectrum, e.g., Ghirlanda et al.
2003; Ryde 2004). Power laws are usually attributed to
nonthermal processes, the Planck function indicates a thermal
origin, and the Band function and broken power laws can be
either thermal or nonthermal depending on the values of their
parameters (i.e., the values of their spectral slopes).

Composite models have also been used to fit GRB spectra.
For instance, Gonzélez et al. (2003) first found that including a
broader energy range beyond a few MeV, one burst observed
by the Compton Gamma-Ray Observatory (CGRO) could be

fitted by a power law, in addition to the Band function which
dominates the emission at low energy. Moreover, Ryde (2005)
fitted a Planck function plus a power law to CGRO/BATSE
GRBs and found that the Planck component dominates.
Similarly, using Fermi data, Abdo et al. (2009) fitted a Band
function plus power law to GRB 090902B, while Ryde et al.
(2010) fitted a multicolor blackbody instead of the Band
component to the same burst. GRB (090902B is the most
prominent example with the thermal Band or multicolor
blackbody dominating over a nonthermal power law. The
Fermi/GBM later confirmed the existence of an additional
higher energy power-law component in a number of bursts
(e.g., Ackermann et al. 2010; Guiriec et al. 2010). Furthermore,
it was also shown that if a blackbody component is added to the
nonthermal Band function the fit quality improves significantly
in many cases (e.g., Guiriec et al. 2011, 2013; Axelsson et al.
2012; Burgess et al. 2014; Nappo et al. 2017). Later, Guiriec
et al. (2015a) introduced a three-component model, which
could be fitted to many bursts. Moreover, Vianello et al. (2018)
reported detection of a high-energy break in two long GRBs
(see also, Barat et al. 2000), and Oganesyan et al. (2018)
reported an additional low-energy break in the spectrum of
several GRBs.

In contrast to time-integrated spectroscopy (e.g., Goldstein
et al. 2012; Gruber et al. 2014), i.e., the whole period of
emission (or pulsation in the light curve) is treated as a single
time bin, spectroscopy can also be done in a time-resolved
manner (e.g., Yu et al. 2016), i.e., the light curve of the
pulsation period is grouped into multiple time bins and spectral
analysis is performed in each time bin individually. Indubi-
tably, a burst often displays a varying behavior in its time-
resolved emission. As an example of this, Guiriec et al. (2015b)
found a pure blackbody at the beginning time of GRB
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131014A, followed by mixed thermal and nonthermal
components in later time, a property similarly demonstrated
in other bursts as well (e.g., Ghirlanda et al. 2003; Ryde et al.
2011; Zhang et al. 2018). However, there is no single empirical
model found to be preferred for every GRB spectrum.

GRB spectra were early noted to evolve significantly within
each pulse (Golenetskii et al. 1983; Norris et al. 1986).
Therefore, time-integrated spectra (as they are usually called)
are actually averaged spectra, hence only time-resolved spectra
should be used to directly infer physics. Alternatively, though,
indirect methods can still be used as shown in Ryde &
Svensson (1999). Several time-resolved spectral catalogs of
GRBs exist in the literature (e.g., Kaneko et al. 2006; Yu et al.
2016), but they all make use of the frequentist approach.
Similarly, spectra from overlapping pulses are likely to show
averaged behaviors, so that separated pulses must be used in
order to obtain the cleanest possible spectral results that are
suitable to be used to draw physical conclusions. On the other
hand, the temporal binning also affects the results of the
spectral analysis. If the time bins are too coarse, there is
spectral evolution within the bins; if the time bins are too fine,
the signal-to-noise (or statistical significance) decreases. There-
fore, the time bins must be defined in such a way that they
capture the intrinsic variability of the light curve (i.e., they can
be treated as “instantaneous”) while maximizing the signal in
each bin. The Bayesian block method (Scargle et al. 2013;
Burgess 2014) that identifies statistically significant intensity
changes in the light curve has been shown to be an adequate
method for this task. This method results in time bins that only
have a small, observed, intensity variation across their duration.

In the current study, we employ Bayesian inference which
accounts for relevant prior information. During this process the
background is incorporated into the model as a nuisance
parameter which can be marginalized out. The resulting
posterior probability distributions of parameters are obtained
by the technique of Markov Chain Monte Carlo (MCMC). All
parameter uncertainties are characterized by the highest
posterior density credible intervals.

In this paper, we present the first systematic study of the
time-resolved spectra of individual GRB pulses using the full
Bayesian analysis method. Our sample is observed by the
Fermi/Gamma-ray Burst Monitor (GBM) during its first 9 yr
of mission and consists of 38 pulses from 37 bursts. The
analysis methods and results are presented in Sections 2 and 3
respectively. We summarize and conclude our findings in
Section 4. Unless otherwise stated, all error bars are given at
the 68% (1o) Bayesian credible level.

2. Methods and Results
2.1. Burst, Detector, and Pulse Selection

The Fermi/GBM has triggered on 2050 GRBs from 2008
July until 2017 March. The GBM consists of 14 detectors, of
which 12 are sodium iodide (Nal, named from nO to n9, na, and
nb) detectors which cover roughly 8 keV to 1 MeV, and two
are nondirectional bismuth germanium oxide (BGO, named b0
and bl) detectors which cover roughly 200 keV to 40 MeV
(Bissaldi et al. 2009; Meegan et al. 2009). This arrangement
makes the Fermi/GBM a powerful all-sky (=8 sr that is not
occulted by the Earth) surveying monitor with a wide energy
range over 3 orders of magnitude. Preliminary GRB data is
uploaded to the NASA /HEASARC database minutes after the
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trigger, including the trigger file and quick-look light curves.
Detailed data files with the highest temporal (CTIME and TTE
files) and spectral (CSPEC and TTE files) resolutions are
downloaded from the spacecraft within hours. This makes the
online Fermi/GBM GRB database a near real-time and most
up-to-date GRB data repository.” For the spectral analysis
described in Section 2.3, we used the standard Fermi/GBM
analysis energy ranges: 8—30 keV and 40 keV to ~850 keV for
the Nals (avoiding the K-edge at 33.17 keV),6 and ~250 keV
to 40 MeV for the BGOs.

The purpose of our study is to follow the spectral evolution
during individual emission episodes in the jet environment of
the GRB. Therefore, we searched specifically for structures in
the light curve that can be characterized as connected emission
activities. We visually inspected all the 256, 512, and 1024 ms
TTE (Time-Tagged Events) light curves and searched for such
structures from all of the 2050 GRBs. We used those Nal
detectors with viewing angles of less than 60° in order to
maximize effective area (see Goldstein et al. 2012). In many of
the selected cases, the emission episodes consist of individual
pulses that are clearly separated by intervals of background
level, which is identified as a flat or monotonic inter-pulse
signal. However, since the shape of any connected emission
activity from the jet is not, a priori, known (see, e.g., Lazzati
et al. 2013), we want to avoid being too restrictive in our
selection. Therefore, we also include in our sample emission
episodes with additional features that can be interpreted as
subpulses (that are more prominent than statistical fluctuation).
However, these features should clearly be subdominant and be
temporally connected with the main change in intensity. The
variety of connected emission activities that were selected, for
this step in defining the sample, are illustrated by the light
curves shown in the figures in the Appendix. We note that
another selection criterion to identify emission episodes could
have been chosen, for instance, requiring a certain shape of the
pulses, described by analytical functions (Norris et al. 1996;
Hakkila & Giblin 2006). However, any such criteria are
unnecessarily restrictive, since they assume a particular,
analytical shape of the pulse, which we want to avoid. Finally,
sometimes solar flares could also contribute to the low-energy
channels which cause a broad pulse; however, these are easily
identified by their emission characteristics. Such background
events are identified and excluded in our study.

We selected 290 long bursts that were identified with at least
one of these emission episodes, clearly separated by the
nonemission background intervals. The next step in the
selection process is to apply the method of Bayesian Blocks
in order to identify spectra for which time-resolved spectrosc-
opy can be performed. This step is the most restrictive and
important and is therefore discussed in Section 2.3. The sample
of 290 bursts is thus further reduced to 37 bursts, resulting in a
sample of 577 spectra, which defines the final sample.

For the spectroscopy, we follow the procedure of the Fermi/
GBM GRB time-integrated (Goldstein et al. 2012; Gruber et al.
2014) and time-resolved spectral catalogs (Yu et al. 2016) to
select at most three Nals and one BGO for the spectral analysis.
The respective TTE and spectral response files are used for the
sets of detectors selected. We followed the standard Fermi/GBM

5> The data can be obtained by either visiting https://heasarc.gsfc.nasa.gov/

W3Browse/fermi/fermigbrst.html or using the built-in command of 3ML
(Vianello et al. 2015).

6 https: //fermi.gsfc.nasa.gov/ssc/data/analysis/GBM_caveats.html
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catalog analysis method to use the suitable response files. All the
response files used in this study are automatically generated by the
Fermi/GBM repository’ according to the location obtained by
the Burst Advocate (BA) from the GBM Team within weeks of
the detection of the burst. The choice of the burst location and
systematics that might affect the spectral analysis results are
discussed in Connaughton et al. (2015).

2.2. Background Fitting

One of the Nal detectors that recorded the largest value
photon counts per second is used to define the background
intervals pre- and post-emission (i.e., the before and after the
pulse). These intervals are then applied to all detectors. As a
standard procedure in GRB background fitting of GBM data,
we fit a polynomial, of order 0—4, to each energy channel (128
channels for TTE) of each of the detectors. The optimal order
of the polynomial is determined by a likelihood ratio test
independently for each energy channel. The polynomial is
interpolated into the source and integrated over the source
interval to obtain the background photon count flux. The error
of the flux in each channel is also computed.

For some bursts, selection of two background intervals was
not possible. For two cases in our sample (GRB 110817 and
GRB 130305; Table 1), only one background interval was
selected. This happens when the burst occurs right before the
entrance of the South Atlantic Anomaly (SAA) region where
the detectors must be shut down to avoid damage, or right after
the exit of it. For one case (GRB 081009, see Table 1) there are
several pulses separated by intervals that are background
dominated. In order to better constrain the background
polynomial shape, in this case, three background intervals
were selected, instead.

2.3. Light-curve Binning and Spectral Fitting

The spectral analysis is done using the Bayesian spectral
analysis package 3ML® (Vianello et al. 2015). As a first step in
time-resolved spectroscopy the light curves have to be rebinned
into adequate intervals. Different methods can be used, for
instance, binning by constant time interval df, binning by
statistical significance, and binning by Bayesian Blocks
(Scargle et al. 2013). Burgess (2014) argued that in order to
obtain the finest time bins (therefore the highest number of time
bins) while minimizing the effect of mixed spectra caused by
intrinsic spectral evolution (photons coming from distinct
emission regions in the ejecta could arrive at the detector at the
same time), the Bayesian Block method should be used.
Therefore, for each burst, we rebinned the TTE light curve of
the brightest Nal detector into Bayesian Blocks with a correct
detection rate for a single change point of py = 0.01 (see
Equation (11) of Scargle et al. 2013). The Bayesian Block
binning is then transferred and applied to all other detectors.
We note, though, that the Bayesian Block method assumes that
the variability in the light curve is the same over the whole
energy range. However, the variability of the light curve might
be dominated by the variability in the lowest energy photons,
since GRB spectra are, in general, soft (e.g., Kaneko et al.
2006; Goldstein et al. 2012; Gruber et al. 2014; Yu et al. 2016,
see also Section 3). Therefore, there is a possibility that spectral
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changes in the high-energy channels could be missed due to
lower signal strength (Guiriec et al. 2015a). Moreover, we note
that there is an implicit assumption that spectral variations are
small when the variation in the light curve is small. This
assumption is based on early studies, e.g., Golenetskii et al.
(1983).

Since our aim is to study the time-resolved spectra of
individual pulses, we need at least a few time bins in order to
study the spectral evolution within the pulse. Yu et al. (2016)
used a similar criterion that required the bursts to have at
least five time bins with signal-to-noise ratio >30 (see Vianello
2018, for detailed derivation and discussion). The statistical
significance, S, adopted in the current work is a test statistic
that incorporates the information of signal-to-noise ratio and
suitable for Poisson sources with Gaussian backgrounds (see
Vianello 2018, for the definition of S). We found that the
spectral parameters are typically well constrained for bins with
statistical significance S > 20. Therefore, among the (initially
selected) 290 bursts, we further require pulses to have at least
five Bayesian Block time bins with § > 20 in order to study
their time-resolved spectral evolution. This results in a sample
of 38 single pulses in 37 bursts with at least five S > 20 time
bins. This sample is listed in Table 1.

Nevertheless, for the purpose of a catalog, we still aim to present
the properties of the selected sample with as few constraints as
possible. Therefore, we present below the results of the overall
statistics of this sample (without constraint on S)? as well as the
statistics of this sample with S > 20. For the purpose of inferring
physics from the spectral parameters, only bins with § > 20
should be used, which, for instance, is done in Ryde et al. (2019).

Several different models are typically used in the spectral
analysis of GRBs, e.g., the CPL'° and the Band function (BAND;
Band et al. 1993). The GBM GRB time-resolved catalog (Yu et al.
2016) showed that CPL is preferred over the other frequently used
models for a majority (70%) of bursts, according to the Castor
C-Statistic (CSTAT; a modified version of the original Cash
statistic derived by Cash 1979). Therefore, for the main analysis
below, we fit CPL to all time bins of our 38 pulses. In addition, we
also fit BAND to all pulses to allow for a comparison to be made
between the models. For each time bin, a Poisson distribution for
the source and a Gaussian distribution for the background is used
to obtain the likelihood function. This is because the background is
estimated from a polynomial fit and the source is not.

We inspected all posteriors of the spectra (2 empirical
models for 577 spectra, making up a total of 1154 corner plots)
and checked that 3ML signals the fit has converged. We also
double-checked that the four independent chains used in the
MCMC sampling converged to the same maximum.

In Table 1, we list the 38 single pulses from 37 bursts that
satisfy all these criteria (Column 1), together with the detectors
used (Column?2), the source and background intervals
(Columns 3-6), the total number of time bins (Column 7),
and the number of time bins with minimum significance of 20
(Column 8), and the type of relations for parameter pairs a—E,,
F-E,, and F—a (Columns 9-11), where « is the low-energy
power-law index, E,, is the spectral peak, and F is the energy
flux. The type of spectral evolution for each pulse is listed in
Column 12. In addition, the Spearman’s rank coefficient, r, for

o Note, however, that the relevance of the data points is still provided by the

size of the error bar.
10 This model is also known as the Comptonized model, abbreviated as COMP
due to its theoretical relation to the Comptonized spectral shape.
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Table 1
GRB Name (Column 1), Together with the Detectors (Column 2), and the Source (Column 3) and Background Intervals (Columns 4-6) Used in the Analysis

GRB Detectors A Ty ATgg, AT AT 3 N Ns>20 a-E, F-E, F-a Spectral

(s) (s) (s) (s) Type(r) Type(r) Type(r) Evolution
1) 2 3) ) 5) (6) M ®) ) (10) 1) (12)
081009140 (n3)bl 0. to 10. —25.to —5. 15. to 30. 60. to 80. 19 16 —(0.12) 2(0.64) 1(0.60) it.
081009140 (n3)bl 33. to 55. —25.to —5. 15. to 30. 60. to 80. 13 6 —(0.77) 3(—0.43) 2(0.05) h.t.s.
081125496 (na)nbbl —5. to 20. —20. to —10. 30. to 50. 12 6 1(—0.69) 1(-0.19) 1(0.74) h.t.s.
081224887 n6n7(n9)bl 0. to 25. —25.to —5. 30. to 60. 10 7 1(0.83) 1(0.83) 1(0.97) h.t.s.
090530760 (n1)n2n5b0 —1. to 180. —25. to —10. 200. to 250. 10 6 1(0.76) 1(0.95) 1(0.90) h.t.s.
090620400 (n6)n7nbb1 —1. to 25. —25.to —10. 30. to 45. 11 5 2(—0.02) 2(0.17) 1(0.48) it
090626189 (m0)n1b0 30. to 39. —25. to —10. 80. to 95. 15 8 3(—0.12) 1(0.15) 1(0.84) it
090719063 n7(n8)bl —1. to 25. —25.to —10. 35. to 50. 15 11 2(0.65) 1(0.71) 1(0.83) h.t.s. to i.t.
090804940 n3n4(n5)b0 —1.to 15. —25. to —10. 25. to 40. 14 8 3(—0.15) 2(0.9) 3(—0.22) it
090820027 (n2)n5b0 25. to 60. —20. to 10. 80. to 95. 25 19 2(0.53) 1(0.67) 1(0.79) flat to i.t.
100122616 (n6)nabl —5. to 40. —20. to —10. 50. to 80. 14 5 2(—0.69) 2(—0.83) 1(0.78) it. to ?
100528075 n6(n7)nbbl —5. to 60. —30. to —10. 66. to 100. 16 7 3(—0.44) 3(—0.17) 1(0.72) h.t.s.
100612726 n3n4(n8)b0 —2. to 20. —30. to —5. 25. to 100. 12 6 1(0.05) 1(0.03) 1(0.92) h.t.s.
100707032 n7(n8)bl 0. to 30. —20. to —5. 40. to 100. 19 13 1(0.58) 1(0.57) 1(0.97) h.t.s.
101126198 (n7)n8nbb1 —5. to 40. —30. to —15. 50. to 80. 15 7 1(—0.15) 2(0.38) 1(0.54) flat to h.t.s.
110721200 (n6)n7n9b1 —1. to 20. —25.to —10. 35. to 50. 12 9 1(0.22) 1(0.35) 2(0.51) h.t.s. to s.t.h.
110817191 n6n7(n9)bl —1.to 11. —20. to —7. 9 5 1(0.21) 1(0.26) 1(0.98) h.t.s.
110920546 (n0)n1n3b0 —1. to 160. —15. to —5. 175. to 200. 14 10 2(—0.86) 1(0.88) 1(—=0.71) h.t.s.
111017657 (n6)n7n9b1 —5. to 20. —25. to —10. 35. to 50. 13 6 1(—0.10) 1(—0.25) 1(0.92) h.t.s. to s.t.h.
120919309 (n1)n2n5b0 —2. to 35. —25.to —5. 60. to 100. 15 6 1(0.48) 1(0.55) 1(0.88) it
130305486 n6(n9)nabl —3. to 35. 50. to 70. 13 8 2(—0.82) 2(—0.44) 1(0.81) h.t.s. to flat
130612456 n6(n7)n8bl —1.to 15. —25.to —10. 25. to 45. 11 6 3(0.11) 2(0.54) 1(0.86) flat
130614997 (n0)n1n3b0 —1.t09. —25. to —10. 20. to 45. 8 5 3(—0.20) 2(0.40) 1(0.60) h.t.s.
130815660 (n3)n4n5b0 —1. to 47. —25.to —10. 55. to 75. 13 5 1(—=0.27) 1(—0.38) 1(0.93) h.t.s.
140508128 (na)bl —1.to 15. —40. to —10. 100. to 150. 18 11 3(0.28) 2(0.47) 1(0.91) it
141028455 (n6)n7n9b1 0. to 40. —30. to —10. 50. to 100. 18 12 2(0.63) 1(0.37) 1(0.85) h.t.s.
141205763 (n2)n5b0 —2. to 20. —40. to —10. 25. to 80. 14 5 1(0.46) 2(0.75) 1(0.75) it
150213001 n6n7(nd)bl —1. to 10. —25.to —10. 20. to 45. 24 19 1(0.03) 1(0.21) 1(0.46) h.t.s. to i.t.
150306993 (n4)b0 —1. to 25. —25.to —10. 35. to 55. 11 7 2(0.93) 2(0.83) 1(0.83) h.t.s.
150314205 nl(n9)bl —1.to 18. —25. to —10. 30. to 55. 20 14 1(—0.23) 1(—0.36) 1(0.85) h.t.s. to s.t.h.
150510139 nOn1(n5)b0 0. to 50. —25. to —10. 65. to 95. 30 16 3(0.13) 1(0.13) 1(0.81) s.t.h. to h.t.s.
150902733 (n0)n1n3b0 —1. to 25. —25.to —10. 30. to 55. 22 14 1(0.13) 1(0.28) 1(0.85) h.t.s. to i.t. to h.t.s.
151021791 n9(na)bl —1. to 10. —25.to —10. 25. to 45. 10 5 2(0.86) 1(0.75) 1(0.64) h.t.s.
160215773 n3n4(n5)b0 160. to 200. 100. to 150. 250. to 300. 19 11 2(—0.60) 2(0.84) 1(—0.54) it.
160530667 n1(n2)n5b0 —2. to 25. —40. to —10. 40. to 80. 22 19 2(0.73) 1(0.84) 1(0.87) s.t.h. to h.t.s.
160910722 nln2(n5)b0 7. to 20. —40. to —10. 40. to 80. 15 14 1(0.36) 1(0.15) 2(0.86) h.t.s.
161004964 n3(n4)b0 —2.to 25. —40. to —10. 40. to 80. 11 5 1(0.20) 2(0.02) 1(0.85) h.t.s.
170114917 nl(n2)nab0 —1. to 20. —25.to —10. 35. to 65. 15 9 2(—0.34) 1(—=0.17) 1(0.87) h.t.s. to ?

Note. The number of time bins using Bayesian blocks across the source interval (Column 7), and the number of time bins with statistical significance of at least 20 (Column 8) are also listed. Columns 9-11 list the type

of parameter relations, with the Spearman’s rank coefficient, r, in the brackets. Column 12 lists the evolutionary trend of the peak energy. The detector in brackets is the brightest one, used for background and Bayesian

block fitting.
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the parameter relations is also listed in the brackets of
Columns 9-11 next to the type.

Finally, we note that the models used here are empirical in
nature. Physical models can be used and directly compared to
each other, but this is out of the scope of the current paper. Note
also that model selection is based on prior experience and the
statistics (frequentist or Bayesian) cannot identify the true model
but only can compare competing ones. While the current study
focuses on extracting the parameters of the best model from
previous experience, a more standardized study on all kinds of
empirical and physical models should be done in the future.

3. Spectral Results

The complete fitting results for the CPL and BAND models of
all 577 spectra are listed in the table of Appendix C. For each
pulse, we list the start and stop times of the Bayesian blocks
(Columns 1 and 2), the significance S (Column 3), the CPL fitted
parameters (normalization K (ph s tem ™2 keV_l), the low-
energy power-law index o, the cutoff energy E., (keV,
Columns 4-6), the derived CPL peak energy E, (keV, Column
7), the CPL energy flux, F (erg s 'em ™2, Column 8), the BAND
fitted parameters (normalization Kganp, ph s 'em™2 keVﬁl), the
low-energy power-law index aganp, the high-energy power-law
index Bpanp, the peak energy E, panp (keV, Columns 9-12),
the BAND energy flux, Fganp (erg s ! cmfz), the difference in
the deviance information criterion (DIC) between CPL and
BAND, ADIC = DICBAND_DICCPL (Column 14), and the
effective number of parameters of CPL and BAND, pp- and
Ppic.ganp (Columns 15 and 16).

We also provide the analysis result files in FITS format for
every time bin, which are available at 10.5281/zenodo.2601901.
They provide complete information of the fits such as the
parameter values, covariance matrices, and the statistical
information criteria. They can be read readily by 3ML to plot
the resulting spectra and the posterior probability distributions.
The results can be used for further studies of the spectra of these
pulses.

3.1. CPL versus BAND: which One Is “Better”?

We have fitted the data with the empirical models which have
been used as standard models in the field and which have been
shown to be compatible with the data (e.g., Kaneko et al. 2006;
Goldstein et al. 2012; Gruber et al. 2014; Yu et al. 2016). In these
catalogs, the empirical model fits have also been compared to
each other, using the difference in CSTAT. Similarly, in
Bayesian statistics, model comparison is done using the so-
called information criteria. However, the “best” information
criterion to use is an active research topic in Bayesian statistics
(see, e.g., Gelman et al. 2014, for a recent discussion). In this
paper, we compare models by adopting the DIC (Spiegelhalter
et al. 2002), defined as DIC = —2log[p(data|f)] + 2ppc,
where 6 is the posterior mean of the parameters and Dpic 1S a

term to penalize the more complex model for overfitting (see,
Section 3.3 of Gelman et al. 2014)."!

! The Ppic approaches the total number of parameters of the model when the
posterior mean and mode are similar. However, when the posterior is highly
skewed, it can become negative. We found that negative pp, - are associated
with time bins having low signal-to-noise ratio. In such cases, the value of DIC
indeed cannot determine whether a model is preferred. In the extreme example
where low signal is present, all models will perform equally “bad,” and in this
case the values of DIC are not trustable.
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The values of the difference between BAND’s and CPL’s
DIC, defined as ADIC = DICganp—DICcpr, are listed in
Column 14 of the table in Appendix C. Since DIC is defined as
the negative logarithm of the probability of predicting the
observed data given the posterior mean, a positive value of
ADIC would mean that the CPL is preferred given the
observed data (as seen in Column 14).

However, just like any other statistical measures, attempting
to summarize the multidimensional posterior distribution in just
one number can often be misleading. In some cases, we see that
|ADIC]| can be as large as hundreds of thousands. It is of course
very dangerous to blindly believe such a number and claim that
one model is exceedingly better than the other. Thus, we need
to check the values of pp- for both models (Columns 15 and
16). We checked that in almost all of the cases for which the
ADIC is highly negative, so is pp;c ganp- We found that when
DICganp < DICcpL, Ppicpanp < 0 in most cases.

The posterior corner plot contains the two-dimensional
probability density maps for each pair of parameters. The
marginal probability for each parameter is also computed by
the integral of the conditional probability over all but the
desired parameter. An acceptable fit is indicated when the
probability density map is centered within the prior limits.
When the probability density of the normalization increases
toward zero, upper limits can only be inferred. A check to the
posteriors of those Band fits with highly negative ppic ganp
reveals that the normalization is often small, indicating that the
addition of an extra power-law segment has a negative impact
on the fit.

In this study, we use the same empirical model throughout
the whole burst for consistency. However, when there is
enough data in the high-energy range (higher than a few
100 keV where the spectral peak usually resides), the Band
function might be preferred as indicated by the value of ADIC.
This usually occurs around the peak time in the light curve.
Although the models used in the current study are empirical,
they are useful in extracting spectral parameters and their
evolution, which can give an indication of the physical model
underlying the emission. Such investigations can thus motivate
physical models to be fit directly to the data.

In summary, we found that the cutoff power-law model is the
preferred model, since it systematically has a lower DIC value.
In addition, the resulting parameters for the CPL fits are
constrained within the prior ranges more often than for the
Band function fits. This result is consistent with previous GBM
spectral catalogs. However, we note that the preference of the
exponential cutoff model could be due to the lack of photon
counts at high energy in the GBM energy channels.

3.2. Parameter Distributions

Figures 1 and 2 show the overall parameter distributions,
including o, E, and 3, E}, and the derived parameters, E;, (for
CPL) and F. The average values and standard deviations of the
distributions are listed in Table 2.

Since the errors of the fitted spectral parameters could not be
taken into consideration in the histograms, we performed kernel
density estimation (KDE) on individual parameter distribu-
tions. A Gaussian kernel is chosen. In order to be conservative,
the standard deviation of the Gaussian kernel is set equal to the
larger of the asymmetrical errors. The KDEs are overlaid on
Figures 1 and 2.
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Figure 1. Parameter distributions of the fitted parameters of CPL. Black histogram shows the distributions regardless of significance, and blue histogram shows the
distributions with S > 20. The curves represent the kernel density estimation (KDE) of the distributions, using Gaussian kernels where the standard deviation is set to
the larger one of the asymmetrical errors. For E}, and E, only the values within the GBM energy range (8 keV—40 MeV) are shown.

The average values of o, E},, and F distributions for CPL and
BAND agree within 1o for § > 20. Since the data and analysis
conditions of the current study are different from previous
catalogs (e.g., Gruber et al. 2014; Yu et al. 2016), the parameter
distributions shown here should not be treated as a one-to-one
direct comparison. Nevertheless, we still find that the
distributions of o and E, are in agreement with previous
time-resolved catalogs (e.g., see Table 2 and Figure 3 of Yu
et al. 2016). Therefore, the frequentist and Bayesian analysis
give consistent results. The distribution of § that we obtained
has lower values than that of Yu et al. (2016), who did not
distinguish between single and composite pulses (see the lower
right panel of Figure 3 therein). This indicates that single pulses
are in general softer, and that the higher values of 5 might be a

result of overlapping spectra from composite pulses which
contain photons from various emission sites and times.

It is observed that the majority of the low-significance data
points in the a—E, plot have @ < —2 and E; ~ 5 MeV, which
is reflected by an unexpected peak at 5 MeV in the E.
histogram. First, we noticed that when plotting the E,
distribution of time bins with S > 20 only, the peak at
5 MeV completely disappears. Second, these are spectra not
from one particular burst but from either the beginning or the
end of multiple bursts. Third, we also noticed that noise
dominates at energies =1 MeV, resulting in overall lower
significance for the time bin. Last but not least, this peak does
not show up in the KDE. This implies the errors on those
values of E. are very large, which means that the Bayesian
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Figure 2. Parameter distributions of the fitted parameters of BAND. Black histogram shows the distributions regardless of significance, and blue histogram shows the
distributions with § > 20. The curves represent the kernel density estimation (KDE) of the distributions, using Gaussian kernels where the standard deviation is set to
the larger one of the asymmetrical errors. For E, only the values within the GBM energy range (8 keV—40 MeV) are shown.

inference struggled to find a cutoff point. We therefore repeated
the spectral analysis on these time bins using a simple power
law, and found that they are indeed well fit by a single power
law. Since noise dominates at energy E 2> 1 MeV for these
spectra, the value of E, cannot go beyond 5 MeV and is highly
uncertain as indicated by the error bars. This indicates that for
low-significance time bins, the spectrum can be sufficiently
described by a single power law and a spectral break is not
necessary.

In Figures 1 and 2, the a-distributions contain all analyzed
time bins. A consequence of this is that individual bursts
contribute to the distribution with a varying number of bins.
This leads to a bias toward bursts with many time bins. In order
to avoid such a bias, one can instead interpret the distribution
containing only one bin per burst. Furthermore, the best bin to

characterize the emission mechanism during a pulse is the bin
containing the largest value of « indexes in each pulse/burst.
The reason for this is that physical models typically have a limit
to how hard the spectra are allowed to get. Therefore, if one
single bin violates such a limit the corresponding emission
model is rejected by the data. This is, of course, under the
assumption that a single emission mechanism is responsible for
the full duration. We, therefore, identify the largest value of «
in each of the 38 pulses in the sample: a,x = max(a(?)). We
present their histogram in Figure 3 in which we also plot the
a = — 2/3-line, which is the “line of death” for synchrotron
emission. In order to calculate the fraction of a,.-values that
are incompatible with synchrotron emission, i.e., the fraction of
bins lying to the right side of the red line, we identify the cases
for which the 1o lower limit of the au.y i larger than —2/3.
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Figure 3. Histogram of the maximal value of « in each of the 38 pulses in the sample. The red line indicated the line of death for the synchrotron interpretation for
individual pulses, assuming that the same emission mechanism operates throughout the pulse. 60% of the pulses have oy, (Within a 1o lower limit of the error) that is

incompatible with synchrotron emission.

Table 2
The Values of the Average and Standard Deviation of the Parameter Distributions
Model o 10g,o(Ep /keV) log,(F /10 % erg™" s™' cm™?) log,o(E. /keV) 8
CPL —1.07 £ 0.63 log;((331) & 0.53 log,,(1.17) = 0.77 log,,(457) & 0.68
CPLg>20 —0.79 £ 043 log,,(234) £ 0.44 log,,(2.86) + 0.44 log,,(206) £ 0.42
BAND —0.31 £ 0.84 log,,(170) £ 0.60 log;,(1.39) + 0.68 —3.18 £ 0.66
BAND;s:29 —0.59 £ 041 log;((193) & 0.44 log;(,(2.90) £ 0.43 —3.23 £ 0.68

Note. For E, and E,, only values within the GBM energy range (8 keV—40 MeV) are used in the calculation.

We find that a majority of the pulses (60 %) are inconsistent
with synchrotron emission, using this criterion. This fraction is
significantly larger than what is found by applying the line of
death to the full distribution of a-values (Preece et al. 1998, see
also Ghirlanda et al. 2002).

3.3. Spectral Evolution

In Appendix A, we show the CPL and BAND parameter
evolutions across the duration of each pulse, with color scale
from light blue (start) to deep blue (end) showing temporal
evolution and the light curve overlaid. Data points with red,
orange, yellow, and no circles indicate statistical significance
§$>20,20>8 > 15,15 > 5 > 10, and S < 10, respectively.
Many of the low-significance data points are not constrained, as
seen from the huge negative-side error bars.

It is observed that the values of the low-energy spectral
indices of CPL and BAND, « and aganp, are approximately
equal to within errors and track each other during the main

emission periods of the pulses (which are also the most
significant time bins, indicated by red circles). As discussed in
Section 3.2, aganp tends to have slightly higher values than «,
and Oganp usually have lower values than —3.

In most pulses the evolution of « exhibits a variation that
appears to track the variation in the light curve. This is most
pronounced around the pulse peak, where the time bins also
have the highest significance. In some cases there is a slight
temporal shift between the a-variation and the light curve.
These observed properties are similar to earlier findings by, for
instance, Crider et al. (1997), Ghirlanda et al. (2002), Lloyd-
Ronning & Petrosian (2002), and Basak & Rao (2014) and are
further discussed in Section 3.5.3.

For the behavior of the peak energy, it is obvious that in
almost all time bins E; and E, ganp are well within half an
order of magnitude. It is noticed that £}, ganp < E, during time
bins with S > 20. Combining with the observation that
QBAND > @ > [panp, this suggests that BAND is trying to
fit the spectrum by mimicking the curvature below the CPL’s
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peak energy using two power-law segments. This can also
explain the hard BAND spectrum during low-significance time
bins: the overshot of Sganp at high energies is tolerated by the
noisy time bins.

The evolution of E, is observed to exhibit various trends
(Column 11 of Table 1). We found that 16 exhibit pure hard-to-
soft (h.t.s.) evolution (42%), while 8 exhibit pure intensity
tracking (i.t.) evolution (21%). Seven pulses change from either
h.t.s. or flat to i.t. or soft-to-hard (s.t.h.) evolution. Lu et al. (2012)
studied simulated GRB pulses and claimed that an i.t. evolving
pulse can be composed by multiple h.t.s. evolving pulses. Four
cases cannot be classified into the above categories: GRB
150510139 and GRB 160530667 exhibit s.t.h. to h.t.s. evolution;
GRB 100122616 i.t. to unclassified, and GRB 170114917 h.t.s. to
unclassified (marked by a “?”’) during part of the pulse.

The calculated energy fluxes for CPL and BAND, F' and
Fganp, agree very well for every spectrum and they basically
track the photon light curve. During low-significance time bins,
Fganp is always larger than F, which could be explained by the
aforementioned harder BAND spectrum.

3.4. Global Parameter Relations

Figure 4 shows the overall parameter relations within the
GBM energy range (8 keV—40MeV) with statistical signifi-
cance S > 20, in five panels of the parameter pairs: a—E, for
CPL (upper left panel), a—E, for CPL and BAND (upper right),
F-E, for CPL and BAND (middle left), F—a for CPL and
BAND (middle right), and S—a for BAND (bottom). It is
observed that the distributions of parameters for CPL and
BAND show no obvious difference nor any global relation.

For statistical significance S > 20, all except one a-values are
between —2 and 1 to within 1o uncertainty for both CPL and
BAND, which are typically observed in studies of GRB prompt
spectra. We note that that G can be very negative (~—3 or
below). There are two possible reasons for this. Either the BAND
model is trying to mimic a cutoff in the high-energy spectrum, or
the poor count statistics at high energies prevents a determination
of (3 (see, e.g., Kaneko et al. 2006; Goldstein et al. 2012; Gruber
et al. 2014; Yu et al. 2016). The threshold of F for the high-
significance data p01nts is ~107"-10 %erg s ' cm 2.

The peak energy, E,, for BAND is a fitted parameter, while
that for CPL is calculated from E, = (a + 2)E.. Notice that
when « has lower values than —2 or when Oganp has higher
values than —2, E, becomes negative and thus there is no peak
in the v F,, spectrum.

3.5. Individual Parameter Relations

Relations over individual pulses are of greatest interest since
they carry the information closest to the physics of the emission.
We, therefore, provide the relation plots of the 38 pulses in our
sample in Appendix B. In the figures, the relation between v and
E, are shown in the left-hand panels; the relation between energy
flux F and E,,, i.e., the Golenetskii correlation (Golenetskii et al.
1983), are shown in the middle panels; and, finally, the relation
between F and « are shown in the right-hand panels.

Below, we will discuss the appearances of the temporal
tracks in the relation planes by visual inspection. We consider
all time bins with significance S > 10 (i.e., yellow, orange, and
red data points) that are fitted with a CPL function.
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3.5.1. o—E, Relation

The a-E, relations show three main types of behaviors. The
most common behavior is a nonmonotonic relation, with a clear
break. This occurs in 17 pulses. The break either occurs at the
maximal a-value (e.g., GRB 081125), or at the minimum E;, (e.g.,
GRB 150314). Another common behavior (12 pulses) is a
monotonic, straight line in the linear-log plots (see, also Crider
et al. 1997). Of these bursts, 6 have a positive relation (e.g., GRB
090719) and 6 have a negative relation (e.g., GRB 130305), even
if GRB 090620 has a weaker correlation. The third behavior (7
bursts) is given by pulses in which the E, does not vary much,
while o does vary more significantly. This leads to a vertical
relation, or a weakly negative relation (e.g., GRB 100528). In one
of these cases (GRB 090804), though, there is only little variation
in o as well, it even being consistent with a constant at around
a ~ —0.5. In Table 1, all bursts are assigned to one of these three
groups, 1, 2, and 3, respectively. The remaining two pulses (both
in GRB 081009) do not show any clear trend. For the second pulse
in GRB 081009, the reason is that in most of the high-significance
time bins there is no E, (the v F, spectrum is monotonically
decreasing) leaving only a few data points for the relation.

To quantify the relations, we calculate the Spearman’s rank
coefficient, r, which is also provided in Table 1. In general,
values over 0.7 indicate strong correlations. However, only for
a few pulses (8 cases) r > 0.7. A large majority of the pulses
(20 cases) have weak correlations as indicated by the r-value
being below 0.4.

It is noteworthy that among all the Ej—«-relations, only three
pulses have a relation that follows what is expected for
synchrotron emission (Lloyd & Petrosian 2000, their Figure 5),
namely GRB 120919, GRB 130815, and GRB 141205, see
further discussion in Ryde et al. (2019).

3.5.2. F-E, Relation

Turning over to the Golenetskii relation, again three main
different types of relations are revealed (see, also Borgonovo &
Ryde 2001; Firmani et al. 2009; Ghirlanda et al. 2010). The most
common behavior (in 23 pulses) is a nonmonotonic relation with a
distinct break and having power-law segments (e.g., GRB
160530). The break typically occurs at the flux peak of the pulse,
that is, the relation is different during the rise phase and the decay
phase of the pulse. Another common behavior has a relation
described by a single power law (in 13 of the pulses). Of these, 11
pulses have a positive relation (e.g., GRB 090804) and in 2 cases
it is negative (e.g., GRB 130305). Finally, in two cases there are
no clear trends. These pulses are from the second episode of GRB
081009 (again mainly due to fact that many of the E, are not
determined) and from GRB 100528. In Table 1, these three
groups, are denoted by 1, 2, and 3, respectively.

For these relations, we also calculate the Spearman’s rank
coefficient (provided Table 1). Again, only a few pulses (11
cases) have strong correlations (r > 0.7), while a large majority
of the pulses (18 cases) have weak correlations (r < 0.4).

GRB 090804 is an interesting case in which the Golenetskii
relation is prominent, but both E,—« and the F—o relations are
very weak. Such a behavior is, however, an exception. We also
note that Guiriec et al. (2013, 2015a, 2015b, 2016a, 2016b)
have shown that, in their three-component model, a correlation
between the energy flux and the v F, peak energy manifests
itself, for one of the nonthermal components, even in GRBs
where the Golenetskii relation is not valid.
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Figure 4. Global relations of the fitted parameters within the GBM energy range (8 keV-40 MeV) with statistical significance S > 20. Blue data points are for CPL
and red for BAND.
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3.5.3. F~a Relation

Finally, the F—« relations differ clearly from the two first
relations, by it having a much more homogeneous behavior. In
nearly all cases the relation is very similar, with a linear relation
appearing in the semi-log plots. Of these, 32 pulses show a positive
and 2 pulses show a negative relations (e.g., GRB 110920). In only
three bursts there is nonmonotonic relation with a break, albeit
being weak (GRBs 081009 [second episode], 110721, 160910). In
the last case, GRB 090804, the relation is weak since there is only
little variation in both the parameters. Again, this classification is
shown in Table 1 by group 1 (34 pulses), group 2 (three pulses),
and group 3 (one pulse), respectively.

To quantify the observed correlations, we again calculate the
Spearman’s rank coefficient (Table 1). Indeed, for a large
majority of the pulses (28 cases) r > 0.7, and of these, 8 have
very strong correlations, with values over 0.9. There are only
two pulses which have weak correlations (r < 0.4).

We note that in the cases where the variation in Ej, is small, it
is only F and « that are correlated. An example is GRB 100528
for which the Golenetskii correlation is very weak, but the F—«
is very clear.

The fact that the relation between F and « has a similar
behavior for a majority of the pulses, instigates searches for
possible functional relations between the parameters, for use in
physical interpretations of the underlying mechanisms. With
such an goal in mind, we have interpreted the F—« relation in
the context of photospheric models in Ryde et al. (2019).

4. Summary and Conclusion

In summary, we have defined a sample of 38 single pulses
from 37 GRBs out of 2050 Fermi/GBM detected bursts. These
pulses all have more than 5 highly significant time bins, which
allows time-resolved spectroscopy to be performed and the
spectral evolution to be investigated. A total of 577 time-
resolved spectra were obtained and their spectral properties
investigated using a fully Bayesian method. The time bins were
selected using the Bayesian block method (Scargle et al. 2013)
in contrast to the signal-to-noise ratio method, employed in the
previous time-resolved GRB spectral catalog (Yu et al. 2016).
A new statistical measure of the data significance (Vianello
2018) was also used to indicate various significance levels.

We confirm the finding in previous catalogs that the cutoff
power-law function is better than the Band function for most
bursts, when considering the number of degrees of freedom. In
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the current study, we found that, among the frequently used
empirical functions, a consistent description of the time-
resolved spectra of GRB pulses could be achieved by using the
power-law function with an exponential cutoff.

The distributions of the low-energy power-law slope and
peak energy of the v F, spectra from the highest-significance
time bins are consistent with previous results, while the
distribution of the high-energy slope, when using a Band
function instead of a cutoff power law, has a lower value than
that of Yu et al. (2016). The latter study did not distinguish
between single and composite pulses, which thus indicates that
the high-energy slope observed in composite pulses might not
be intrinsic in nature, but an effect of spectral evolution.

In contrast to previous catalogs, we also investigate the
distribution of the maximal value of « in each pulse. Assuming
that one and the same emission mechanism operates throughout
the pulse, we show that the majority of the pulses (60%) are
inconsistent with synchrotron emission, solely based on the line
of death of & = — 2/3.

Finally, we found that a majority of the pulses have a
congruent, monotonic behavior between the low-energy power-
law index « and the energy flux F, which is largely independent
of the flux variation in the light curve. This parameter correlation
is studied in detail in a separate paper (Ryde et al. 2019).
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Appendix A
Plots of the Evolutions

In Figure 5, we show the temporal evolutions of the inferred
parameters for individual pulses.

" 081009140

6 8 10 0 2 4 6 8 10
t—To (s)

Figure 5. Left panel: temporal evolution of « (blue), aganp (green), and Bganp (purple). Middle panel: temporal evolution of E,, (blue) and E}, panp (green). Right
panel: temporal evolution of F (blue) and Fganp (green). Light curves are overlaid in gray color. Data points with red, orange, yellow, and no circles indicate
statistical significance S > 20,20 > § > 15,15 > § > 10, and S < 10, respectively. Color scale from light blue (start) to deep blue (end) shows temporal evolution.
Many of the low-significance data points are marginally or not constrained, as seen from the huge negative-side error bars.

(The complete figure set (38 images) is available.)
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Appendix B
Plots of the correlations

In Figure 6, we show the correlations of the inferred
parameters for individual pulses.
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Figure 6. Left panel: relation of E;—a. Middle panel: relation of F-E,. Right panel: relation of F—a. Data points with red, orange, yellow, and no circles indicate
statistical significance S > 20,20 > § > 15,15 > § > 10, and S < 10, respectively. Color scale from light blue (start) to deep blue (end) shows temporal evolution.
Many of the low-significance data points are marginally or not constrained, as seen from the huge negative-side error bars. All the sources are available in the Figure

Set.

(The complete figure set (38 images) is available.)
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Appendix C
Table for All Results

In Table 3, we show all of the inferred parameters for individual pulses.

Table 3
Time-resolved Spectral Analysis Results of the First Pulse of GRB 081009140

Istart Istop N K a E. E, F Kpanp QBAND BBAND Ep BAND FBAND ADIC Ppic PDIC,BAND
@) 2 (3) “) (5) ©6) (@) ®) ©) 10) an 12) 13) 14) 5) 16)
0.00 037 2126 1357948 x 1072 —1.750018 148552478001 375.08+10548 L7553 x 107 4787148 x 107! 0767580 2584020 29557281 9.83F10480 107 —921.87  -125.85  -1030.44
037  LI1 4727 214703 x 1072 —1.631013 51.68+856, 18.99+3:97 1404} 33 x 1070 5551930 x 107! —11580% 3457072 21.437%88 1435372 x 1076 23643 -12.66 -242.95
LIl 136 39.67  1.60%034 x 1072 —1.46+018 73.6713:7, 40.135327, 2494339 x 1070 7.7312990 x 107! —1.04%08 3514099 3500743 2794% 08 x 1070 21293 -1242 -220.78
136 1.66 5740 48214 x 1071 —0.92+013 43.56+4:%% 47.02+39! 349838 x 1070 7494420 x 107! —0.874042  —438%018 46324190 3.49+178 x 1070 4.66 —6.30 1.16
166 189 5850 361108 x 1071 —0.7370{¢ 36.907 32} 46.98749% 4301339 x 1070 1.58+027 x 1070 0617018 —4344020 45784172 4207380 x 1076 5.61 —8.96 -1.60
1.89  2.04 5807 118702 x 10%2  —1.14*32 67.09173¢ 57.95598% 6.061332 x 1070 744419 1071 —1.05t01¢ —4.10%03 5536739 6127330 x 107© 0.58 —4.09 0.11
204 272 14080 5967093 x 10t1  —0.9150%3 67.2873% 73367438 8.06774% x 1076 921081 x 1071 —0.901092  —4.43+012 72607177 8197138 x 107° —2.09 1.96 3.26
272 300 10235 5877993 x 1071 —0.8870%7 76.9573%8 85.947¢32 LOIHA x 107 1.047310 5 10%0 086739  —4.37702 8443718 1.0559% x 1073 —-0.25 1.28 3.00
300 329 9189 924%1% x 1071 —0.98+0% 52224428 53.52443¢ 6.734399 x 1070 1134013 x 1010 —093+00  —43392  s248t1>  7.067749 x 1070 —-0.22 0.24 245
329 484 181.02 887109 x 1071 —0.98+0%2 42.72+140 43.54+149 532518 x 1070 1025099 x 100 —096700  —4.651092 43231074 5401098 x 107° 0.44 2.06 2,95
484 538 9303 577H9% x 10t!  —0.9679%8 5484743 56.95+¢39 4851237 x 1070 7.544038 x 107" —0913098  —411r03y 5571 4927138 x 1076 -1.90 0.04 2.73
538 565 5832 3504072 x 10! —0.79%913 41,9849 50.80+39 397738 x 1070 1207043 x 1070 0667018 —424%02  49.09%319  3.88+318 x 1076 3.14 ~7.04 -1.53
565 635 7549  1.685037 x 1071 —0.515013 27.01°29] 40.16+3-98 2564303 x 1070 176793} x 1070 —046+01%  —4.657092  39.63F1%8  2.661)88 x 1070 8.07 -8.16 -0.82
6.35  6.89 5749 3427077 x 10t1 —0.691012 21.741321 28.5572%9 1927337 x 1070 2.031033 x 1010 0557908 4574002 2822413 2107303 x 10°° 1.07 -13.85 -13.43
6.89 722 3860 2124032 x 1072 —145934 33.5343, 18.58+243 1707234 x 1070 L11¥040 x 1070 —0.997932  —4.07790% 20507278 16335 x 1000 —120.60  -24.08 -149.93
722 771 3150 1.84%93 x 1072 —1.24408 15.83%177 12.00*434 9.3812488 x 1077 645703 x 1010 —0447040  —4407310 1457719 107398 x 1076 —83.98 -65.80 -146.92
771 195 1508 6114388 x 10v2  —2.024013 36.5113.08, —0.905:9 6.17H1335 x 1077 2417938 x 102 0.657079  —4.0170% 12687112 69679380 x 1077 —12281  -32.70 -152.33
795 895 1527 470430 x 1072 —2.03+0% 19.8155:2) —-0.61+3% 322792 x 1077 5174094 x 10*! 0.1879-38 —441047 1159793 2.9273%82 x 1077 67265  -34.82 -707.46
8.95  10.00 5.45 3361188 x 1012 —2.76709% 4946777180293 377155741230 1217048 x 1077 2.94%98% x 10*2 161408} —-3.79%972 1630728 8367333 x 1078 -70.97 0.73 ~70.73

Note. Time-resolved spectral analysis results of the first pulse of GRB 081009140. Columns (1) and (2) list the start and stop times (in units of s) of the Bayesian block time bins. Column (3) lists the significance of the
bin. Columns (4)—(6) list the best-fit parameters for the CPL model. Column (7) lists the derived values of E, for the CPL model. Column (8) lists the derived CPL energy flux. Columns (9)—(12) list the best-fit
parameters for the BAND model. Column (13) lists the derived BAND energy flux. Column (14) lists the difference between the Deviance Information Criterion (DIC) for the CPL and BAND model,
ADIC = DICganp—DICcpr. Columns (15) and (16) list the effective number of parameters for the CPL and BAND model, respectively. All time parameters have units of s, normalizations have units of
phs™' cm™2 keV ™!, energies have units of keV, and fluxes have units of erg s~' cm™2. N/A means that a reliable value of the flux could not be computed due to large errors in the fitted parameters. The full version
contains all of the spectral analysis results for all GRBs.

(This table is available in its entirety in machine-readable form.)
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